

 1

The Design of a Fault-Tolerant, Real-Time, Multi-Core
Computer System

Kim P. Gostelow

Jet Propulsion Lab, California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

818-354-4185
kim.p.gostelow@jpl.nasa.gov

Abstract—The goal is a fault-tolerant, self-aware, low-
power, multi-core computer for space missions with
thousands of simple cores, achieving speed through
concurrency. A second goal is that the system is not
difficult to program. The proposed machine decides how to
achieve concurrency, in real-time, rather than programmers
who now spend considerable effort carefully orchestrating
every data item’s location and movement. Closely related,
fault-tolerant and power-aware re-organizing behavior is
automatic. The driving features of the system are: simple
hardware that is modular in the extreme, with no shared
memory, and software with significant run-time re-
organizing capability.1 2

TABLE OF CONTENTS

1. INTRODUCTION ..1
2. SYSTEM OVERVIEW ...1
3. THE MODEL OF EXECUTION ..2
4. CONCURRENCY IN FUNCTIONAL PROGRAMS2
5. THE APPLY TREE ...4
6. MOVING FUNCTIONS AND DATA IN REAL-TIME5
7. FAULT DETECTION, ISOLATION, AND RECOVERY6
8. NON-FUNCTIONAL PROGRAMS ..6
9. POWER-AWARE COMPUTING ...7
10. SUMMARY ...7
ACKNOWLEDGEMENTS ..8
REFERENCES ..8
BIOGRAPHY ..8

1. INTRODUCTION
The era of multiprocessor/multi-core computing is here.
Intel[2], IBM[4], Tilera[7], and others have built chips with
dozens of cores. While some are viewed as serious
contenders for spacecraft application, this paper suggests
that simpler is even better. Spacecraft are a special
application, and this paper describes a multi-core system
catering to spacecraft needs. In particular, fault tolerant,
real-time operation, and power management, are two areas
that multi-core can address directly. Key to both fault-

1 978-1-4244-7351-9/11/$26.00 ©2011 IEEE.
2 IEEEAC paper #1607, Version 2, Updated October 26, 2010

tolerance and power management is moving programs and
data without interrupting the system.

2. SYSTEM OVERVIEW
Associated with each core is the core’s memory. A core and
its memory are called a processor, and there are a few
hundred processors per chip (please see Figure 1 below,
though the figure shows only a few processors per chip).
There is no shared memory. Instead, a processor connects
to its neighbors through a high-speed data link. Messages
are sent to a neighbor switch, which in turn forwards that
message on to its neighbor until reaching the intended
destination. Except for the neighbor connections,
processors are isolated and independent of each other.

Figure 1 – Hundreds of interconnected processors with

no shared memory

Some of the processors at the periphery of each chip are a
little different than the inner processors, as they are able to
drive off-chip to external devices or memory processors.
The processors on the periphery also connect chip-to-chip,
thus building up a large processor net. There is no
particular topology to the larger net, as a function at each

 2

processor allows it to forward a message in the correct
direction. Some chip-to-chip connections are not
necessarily nearest neighbor, providing short cuts for some
of the longer physical distances. The peripheral processors
also provide the connections to sensors, actuators, radios,
science instruments, and all the other devices with which
the computer system interacts.

A requirement on this system is very low power. The
design sacrifices speed per processor, but gains silicon to
include more processors per chip, faster interconnect, and
yield. Rejection of shared memory is both a programming
and a hardware design point. Previous studies have shown
the power cost of global memory and caches to be high[17].
Non-shared memory will increase communication needs,
but instead of investing silicon and power in a global
memory system, we build a faster interconnect, where speed
increases can be used by all computations, not just those
that access global memory. Chip stacking is especially easy
because each processor is independent; all wires on a given
chip are within a single processor, or part of a neighbor-to-
neighbor connection. This point of view shares much with
the motivation of the Execube [4] system, though the goals
here are different. The emphasis here is on fault-tolerance
and the ability to move computations in real-time from one
part of the machine to another. Ongoing computations may
move due to

(1) Processor failure

(2) Locality considerations that make it more efficient to
perform the computation in a different part of the
machine

(3) Some portion of the machine is to be powered off to
reduce power use

(4) Some part of the system has been physically damaged.

This movement of data and functions from one area to
another is fundamental. It requires that the machine and its
computations are self-aware, and that it consider where the
work is done, at what rate, and how much power to expend.
 Closely related to moving computations is creating copies
of computations, which is at the core of some forms of
computational redundancy: repeating an instance of a given
computation, as in TMR (Triple-Modular Redundancy),
temporal redundancy, or check-pointing, where either an
exact copy or a different version of the same computation is
used.

3. THE MODEL OF EXECUTION
Execution is based on a functional paradigm rather than von
Neumann. In the von Neumann model

(1) The instructions manipulate the contents of storage
locations in a memory.

(2) The machine executes instructions sequentially, that is,
the operation executes when the program counter
reaches it.

The functional model is based upon

(1) A function executes as soon as the necessary data

arrive.

(2) Variables are mathematical variables – they have a
value – they are not memory cells; for example, no
variable’s value is computed more than once.

The term dataflow [8, 9] has also been used to describe the
functional model, as it pictures input data values flowing
through the functions that produce new output data values.
The functional model of execution is analogous to
asynchronous digital circuit operation, while the von
Neumann model is similar to clocked circuits.

4. CONCURRENCY IN FUNCTIONAL PROGRAMS
Since some readers will be unfamiliar with the advantages
of functional programs in multi-core platforms, we discuss
this point here. We show some example programs that
progress from a non-functional program to pure functions,
and we discuss the compiled version of each and how the
proposed machine can execute the resulting code.

In functional programs, any two expressions may execute
concurrently, and any two functions not dependent on one
another may also run in parallel, where a function f is
dependent on function g if and only if an input argument of
f is (directly or indirectly) an output result of g. Functional
programs thus exhibit implicit concurrency. There is no
need for explicit message passing or other concurrency-
control statements in the program. Although functional
programs can be written in non-functional languages,
functional languages such as Haskell [11], and especially
Fortress [6], even cater to multi-core implementations, for
example, by internally using the parallelism inherent in trees
rather than linear lists (see below).

Writing functional code to achieve concurrency is in
contrast to other approaches. Investigators have looked for
many years at how to make sequential programs run in
parallel [16]. There are many reasons for doing so: the
large number of expensive sequential programs already
debugged and running; or, the view that the task of
programming concurrent systems is too hard for people to
do, so let a few experts work it out while the rest of us write
the code sequentially and they’ll just “make it work”. The
more popular programming paradigms for concurrent
machines such as MPI [12] can be hard to program.

 3

Annotating code to make it possible for automatically
converting sequential code to parallel machines is also
difficult [13]. Such systems are low-level, and require the
programmer do as much work in programming the
concurrency as he does in programming the rest of the job.
The result is carefully optimized code that is sometimes
quite fast, but can be brittle to changes in available
processors or faults requiring re-arrangement of data and
code.

In our view, we should simply be writing the code that
produces the answer, and let the machine do the arranging.
Functional code is one way to do that. Such programs run
just fine on sequential machines, and when you have
available a multi-core machine, it will run even better.

Example A: Program r below is not a function.

extern int sum;
int r(int a, int b, int->int f) {
 sum = 0;
 for (int i=0; i<b; i++)
 sum += f(i);
 return sum; }

Program r is not a function because the variable sum is
computed (assigned) more than once, and the value of r()
can depend upon hidden interactions with other programs
(even f) via variable sum. This makes it difficult for a
person or an analyzer to decide if any given call to r() can
run concurrently with any other program in the system. But
people do write such programs, and programmers can
sometimes annotate or mark a program to help an analyzer
find opportunities for parallelism [13]. My position is that
it is better just to write the program so that, as much as
possible, it behaves in a functional manner in the first place.

Example B: Program m below behaves externally as a
function, but internally uses a non-functional element (the
memory cell "sum") and must work if f is not a function.

int m(int a, int b, int->int f) {
 int sum = 0;
 for (int i=a; i<b; i++)

sum += f(i);
 return sum; }

A graph of program m appears in Figure 2.

Figure 2 – A graph of program m

If we do m(0,100), program m sums all the f(i) where i
ranges from 0 through 99 by re-writing the variable sum.
Because f may not be a function, the program
sequentializes: the value of each i is computed, then f(i),
then the partial sum, and finally we can go on to the next
iteration. Since we don’t know what f does, the f(i) must
execute in this order.

Example C: In a functional system, everything is a function
unless declared to be otherwise. Thus f is a function, and
we re-write m below as a function.

function m(a,b,f) = { s = sequence(a,b);
 x = map(f,s);
 return accumulate(x); }

Because f is a function, all executions of f are independent.
If we run m(0,100), the first statement produces the
sequence s = 0,1, …, 99; the second statement uses a
function called map that decomposes into two functions
mapper and unmapper, where mapper applies f to each
value in s, and unmapper gathers the results together to
create the new sequence x = f(0), f(1), …, f(99); the third
statement sums all the values in x. A graph of the above
functional program appears in Figure 3 below.

Note that “map” generates the parallelism, and the
sequentiality around the variable “sum” is not present. The
functions sequence, map, f, and accumulate are truly
functions: no variable is computed more than once (no
variable’s value is updated), and each function simply
produces a result.

 4

Figure 3 – A graph of the functional program m

An important optimization occurs when we further
decompose the above graph into the graph in Figure 4
where, instead of running each call to f(i) on a different
processor, the machine groups k function calls on the same
processor, with increasing k for smaller f functions. The
graph is a little different than one might expect because the
sequence function produces the integers using a tree, and
the accumulate function sums using a tree. Such an
accumulate function assumes that the sequence over + is
associative, meaning that the terms can be grouped
arbitrarily, though the order of the terms in the sum must
remain the same [5]. If your circumstance does not allow
you to say + is associative (for example, overflow may
occur if sums are not properly grouped), then you cannot
use this version of accumulate. Instead, some other version
of accumulate would be appropriate.

Figure 4 – Further decomposing the graph of Figure 3

A word about granularity: there is no one appropriate level.
 For some problems, maximum performance is achieved
when even simple arithmetic operations such as +, -, *, / are
spread over the machine. For other problems, it is at a
much higher level. It also depends upon the meaning of
“performance”: speed, memory usage, power consumption,
and so on. For this reason, we define concurrent execution
to occur at a function call. Any given function call may be
sent to run concurrently elsewhere. The decision as to
whether the given call is treated as a point of concurrency or
not is made at run-time, even at the time of the call.
Reference [15] reviews a number of algorithms and
scheduling methods applicable to this machine.

In the above paragraphs, we progressed from a non-
functional to a purely functional program, and showed how
the resulting code is executes, and adapts, to the current
processor situation.

5. THE APPLY TREE
In this section we will get into the details of how the
machine creates concurrent threads at function calls and
how it adapts to varying numbers of processors.

Everything begins with a function call f(x)3 which, inside
the machine, is the fundamental box called apply, where
apply(f, x) = f(x). Apply’s job is to receive the value f (a
function) and the data value x, and cause a processor to
execute f(x). We augment apply with another input P which
is the specific set of processors available to that apply for
running f(x), represented in Figure 5 below.

Now f may have several function calls inside it, such as
shown below in Figure 6. Note that each of those function
calls is an apply and thus has a processor resource input.
There are resource allocation functions within f that
distribute the processor resources however f desires. A
compiler can produce default distribution strategies and
associate them with each function f it compiles, but the user
can also supply custom methods.

Figure 5 – The definition of function application

3 To simplify notation, we often show functions as having only of one
argument, though we could have written x1, …, xn instead.

 5

Figure 6 – Function f calls other functions, and sub-

allocates the processors.

Finally, should apply decide to run f(x) on another
processor, then it sends f and x to a remote apply which we
illustrate in Figure 7 below.

Figure 7 – An apply running f remotely

When apply in processor p spawns a remote apply in
processor q, the return address sent to q is (p, local-apply-
address). The remote apply in q then sends its result back to
local-apply-address in p. Any apply can run on any
processor.

The usual execution of nested applies on a single-processor
sequential machine uses a stack. But with concurrency we
have not just a stack of applies but a tree of applies, all of
which can be running at the same time. A simple, bi-
directional or doubly-linked apply tree is shown in Figure 8
as it would appear for function f from the example above,
were function h to make two additional function calls that
run concurrently.

Figure 8 – A portion of an apply tree of function f

You should picture values in the tree flowing down as
arguments, and back up the tree as results. The tree is

constantly adding and deleting nodes at the fringe as
functions call and return. However, each node is actually a
thread context rather than a function call frame on a stack,
as information (for example, processor assignments) can
flow in both directions during the lifetime of any given
node. In particular, the P input to each apply (node in the
apply tree) is still available and can receive further
information regarding processor resources. For example, an
overseer function may decide that it wants processor q
returned, that is, removed from the pool currently in use.
The overseer could begin at any node of the apply tree and
tell it to return processor q. In turn, that apply node sends
notices to its child nodes, telling them to return processor q.
 Since nodes are constantly being created and destroyed,
eventually all the nodes using processor q will complete,
and the parent will simply no longer assign any of its
children to use processor q. However, since some tree
nodes may persist for extended periods of time, such a
passive response to the original request to return processor q
may not be satisfactory. In this case, the nodes using
processor q need to be moved, and then q can be returned to
the overseer.

In this section, we covered in some detail how the machine
creates concurrent threads and adapts to varying numbers of
processors. Moving computations is discussed in the next
section.

6. MOVING FUNCTIONS AND DATA IN REAL-TIME
Consider the Extended Example function m above. Within
m, let’s start the execution of f(17) and then stop the
processor part way through (say the machine detected an
error) and move the computation of f(17) elsewhere. Can
we simply re-run f(17)? Yes; because f is a function, its
only effect is to produce a value – there are no side-effects
or actions that modify any variable. Furthermore, restarts
require no special work on the part of the programmer. As
long as f is truly a function and its inputs are still available,
its execution can be replicated, moved, or re-run, and the
same result is always returned (or there is an error).

The phrase “moving functions” refers to moving the
execution of a function as well as the code itself. Recall
that the apply tree is doubly-linked, with both physical and
logical pointers. There are actually several methods for
moving a node; we describe one of them here: To organize
the movement of nodes, we create a “tree mover” agent,
whose job is to decide which nodes to move from one
processor to another, and to start the moves. The mover
starts at one node, moves it, and then moves each of its
child nodes, as needed. A node is moved or not moved
depending on the purpose of the move, but the mover can
propagate as far as needed, and then stop. Because each
node is actually thread, the move is done by the thread: the
thread notes the fact that it is moving, copies itself to its
new destination, re-directs the sources of any messages it

 6

expects to receive (and, in the interim, forwards to the
destination any inputs that it does receive) waits to hear
from those re-directs and from the destination that all is
ready, and then destroys itself.

Another type of move causes all nodes from a given
program residing on processor P to move to processor Q.
Such a mover does not crawl a tree, but rather finds all
nodes on P, moves each node to Q, and then quits.

The reader may be of the opinion that there is significant
overhead present just in case some function execution is to
be moved. There is definitely more work that is done for a
given function call, but we submit that the absence of the
ability to move functions and data leaves the system brittle
and with fewer options for power management and recovery
from faults. If we are to achieve truly robust computing,
where parts of a distributed machine simply disappear, but
the necessary computations continue on, then such overhead
is not really overhead – it is essential.

7. FAULT DETECTION, ISOLATION, AND
RECOVERY

In this section we will visit the problem of faults. Please
note that our purpose is not to suggest that some particular
fault protection and recovery scheme is appropriate for any
specific circumstance, only that some schemes are very easy
to implement in the proposed system.

Because there are no side-effects, strategies like TMR
(Triple Modular Redundancy) and check-pointing can be
done with virtually no work on the part of the programmer.
For example, if there is a function call f(x) in the program,
and the function is to be protected by TMR, then writing
TMR(f,x) instead of f(x) executes f(x) in three different
processors, and votes the result. Pseudo-code for a simple
TMR function is:

TMR(f,x) = {
 y1 = apply(f,x);
 y2 = apply(f,x);
 y3 = apply(f,x);
 return y1 if (y1 == y2 && y2 == y3) else
 y2 if (y1 == y2) else
 y3 if (y2 == y3) else
 y1 if (y1 == y3) else failed; }

The programmer (and the system) need know nothing more
about f than that it is a function, and the TMR will do its
job.

The above shows a simple voter in the TMR. But in a real-
time system, more difficult situations can arise. For
example, if one of the results is not returned, but the other
two agree, then the TMR can reply with the value agreed so
far so as not to make the computation late. But the point is

that with functions, the job of replicating function execution
is simple, and one can see how the system itself could
decide to apply TMR to function calls on its own to give a
desired level of protection. Any function in any place in the
program can be run using TMR without the participation of
the programmer. This is not possible in traditional,
sequential programs.

Both check-pointing and temporal redundancy are also
options, again with little programmer effort. An apply(f,x)
can save f and x before spawning. If for some reason it
becomes necessary to re-run f(x), the saved f and x are all
that is necessary, and can be re-run at any time.

In this section, we discussed how specific fault detection
and recovery schemes may be implemented. Again, this is
not to imply that more sophisticated schemes might be
necessary. But we do claim that the schemes discussed here
are much simpler to implement and use in a functional
system than in a non-functional one.

8. NON-FUNCTIONAL PROGRAMS
It is not difficult to write most programs in a functional
style, and as long as significant portions of an application
are functions, you will get the benefits when run on the
proposed machine. A detailed example appears in [14], but
here we briefly address the issue of functional programs and
state, such as resources and resource allocators. For
example, consider an allocator that receives requests from a
user to acquire and release chunks of some resource R. The
calls allocate(R, q) and de-allocate(R, q) are requests to R to
allocate, and to return, q instances of R, respectively.
Please see Figure 9 below.

The allocator simply loops on the current state of resource R
and waits for a request (allocate or de-allocate) in the input
stream Q. If the request is to acquire q units of R, the
allocator decides if it has enough, returns either q or zero
units of R to the caller, and correspondingly updates the
state of R (stream “num” in Figure 9). The state update is at
the end of the loop, after which the allocator waits for the
next request. A request to return q units of R is always
accepted and results in an increase in the next value in
stream “num”. The initial value of the loop variable is the
number of units of resource that R can allocate.

Curiously, R above is a function if we consider R to be
function over a stream of inputs, rather than a function on
each item in the stream. That is, given the same input
stream Q (the sequence of allocate and de-allocate requests)
the allocator R always produces the same output stream – it
does not re-write any values. So function R can be written
in a functional language, even though the callers of R see it
not to be a function. And since any call by a program g to a
resource allocator is a non-functional action, the caller g
becomes non-functional. Nevertheless, the vast majority of
programs remain functional and can be executed as such on

 7

the proposed system. But we must make provision for non-
functional code (resource allocators or otherwise) and
isolate appropriately the non-functional parts.

Figure 9 – An allocator as a functional program with a

stream Q of user allocation requests

An example of such isolation is using non-functional code
with TMR. Assume we have a function f, except that at one
point in f there is a single call to resource allocation
program h. TMR(f,x) will cause h to be called three times
instead of once, and each call to h within TMR(f,x) may
produce different results. The solution is that TMR must
know that h is not a function, and thus TMR must “unTMR”
before the calls to h. unTMR requires that the
corresponding calls of h in each of the three f’s all be
replaced by a single call to h(w). The unTMR(h,w) votes
the three instances of argument w, then makes one call to
h(w) and returns the same result to each of the f’s in
TMR(f,x).

Pseudo-code for unTMR is

unTMR(g, z1, z2, z3) = {
 z = z1 if (z1 == z2 == z3) else
 z2 if (z1 == z2) else
 z3 if (z2 == z3) else
 z1 if (z1 == z3) else
 failed;
 return failed if (z == failed) else g(z); }

UnTMR is an example of how non-functional code can be
mixed with functional code, and still allow the system to
deliver advantages for the functional part. However, note
that non-functional code is trouble. It can be
accommodated, but it makes the resulting system less
flexible, and prevents the system from delivering its full
capability. So the goal is to isolate and reduce non-
functional code to a minimum.

9. POWER-AWARE COMPUTING
Adjusting power needs to the current compute load has been
a part of commercial computing for some time [1], so it is
not entirely new to multi-core. But it has come to the fore

in space-borne applications both because multi-core can
draw considerable power, and because it provides another
knob to adjust power consumption to fit the situation. And
regardless of how little power one chip may draw,
combining hundreds of chips together can make the
situation acute [3]. It is always a good idea to use as little
power as you need, possibly with some hot spares ready to
go to work in case of a problem.

In the system proposed here, each function f (both user
functions and library functions) has an associated “load”
function load(f) = (a,b) that returns to the caller a measure
of the “load units” that function f will present to the system,
where a is the load presented by f(x) on a single processor,
that is, the total amount of work to be done, and b is the
number of processors f could usefully use, or, the degree of
parallelism f exhibits. For example, the load function
associated with map(f,s) is load(map, (f, s)) = (load(f,1),
length(s)). A compiler could produce simple load functions
automatically, but handcrafted load functions can replace
compiler-generated functions. So when apply(f,x) is about
to run f(x) on some processor, apply first runs load(f,x) and
uses the result to decide whether to ask the system resource
manager for more processors, possibly requesting the
processors for f’s exclusive use. When asked, the resource
manager considers the availability and then returns to apply
any additional processors to use. When apply is done, it
returns back to the resource manager any processors it
received so they can be used elsewhere.

Because it is a functional language, many instances of apply
occur in quick succession. So should the resource allocator
decide to take back resources, the system will respond to the
change in a timely way. When processors are to be
removed, apply should engage the node mover to move
ongoing computations away from the processors being de-
allocated.

10. SUMMARY AND FUTURE WORK
This paper presents a multi-core hardware and software
system emphasizing power-aware, fault-tolerant, and real-
time operation. It describes a mechanism for moving on-
going computations and data, a capability central to
achieving power-aware and fault-tolerant computing. It is
based on a functional model of execution (as opposed to the
von Neumann model) – a basis that makes simple the
behaviors described here. The hardware is simple, as there
is no shared memory. This alone frees up considerable
silicon resources for other purposes.

Several items are still unfinished, for example, moving a
computation is not yet fault tolerant. But after completing
these, the next step in the design is to model the system,
especially power and fault models, and simulate and
evaluate the performance, under normal operating
conditions, fault situations, and power allocations.

 8

ACKNOWLEDGEMENTS
Research carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. The
author also wishes to acknowledge several discussions with
Rafi Some and remarks from some of the anonymous
reviewers that helped clarify a number of issues.

REFERENCES
[1] Ranganathan Parthasarathy “Recipe for Efficiency:

Principles of Power-Aware Computing” Communications
of the ACM vol. 53 no. 4 (April 2010).

[2] Intel, “Single-chip Cloud Computer” Intel Labs Single-
chip Cloud Computer Symposium, March 16, 2010
http:www.intel.com/go/terascale

[3] Peter Kogge, “ExaScale Computing Study: Technology
Challenges in Achieving Exascale Systems” Univ. of
Notre Dame CSE Department TR-2008-13, September
28, 2008.

[4] Peter M. Kogge, "EXECUBE-A New Architecture for
Scaleable MPPs," International Conference on Parallel
Processing (ICPP '94), 1994, vol. 1, pg 77-84.

[5] Guy L. Steele, Jr. “Organizing Functional Code for
Parallel Execution; or, foldl and foldr Considered Slightly
Harmful” Invited Talk at the International Conference on
Functional Programming (ICFP) ACM SIGPLAN
Edinburgh 2009.

[6] The Fortress Language Specification, v1.0. Tech. Rep.,
Sun Microsystems Inc., March 2008; or
http://projectfortress.sun.com/Projects/Community/wiki/F
ortressDocumentation

[7] Michael Malone, “Onboard Processing Expandable
Reconfigurable Architecture (OPERA) Program
Overview” Fault-Tolerant Spaceborne Computing
Employing New Technologies Workshop, 29 May 2008.

[8] John A. Sharp ed. Dataflow Computing Theory and
Practice Ablex Publishing 1992.

[9] Arvind and Kim P Gostelow “The Id Report: An
Asynchronous Language and Computing Machine” Tech
Report TR-114 Dept of Information and Computer
Science, Univ. of California, Irvine Sept. 1978.

[10] Jack B. Dennis, “General parallel computation can be
performed with a cycle-free heap” Proceedings of
International Conference Parallel Architectures and
Compilation Techniques, 1998, pg 96-103.

[11] Bryan O'Sullivan, Don Stewart, and John Goerzen Real
World Haskell, O'Reilly, November 2008.

[12] “MPI: A Message-Passing Interface Standard” Version
2.2 Message Passing Interface Forum September 4, 2009.

[13] Joseph A. Roback and Gregory R. Andrews “Gossamer:
A Lightweight Programming Framework for Multicore
Machines” Proc. Second USENIX Workshop on Hot
Topics in Parallelism (HotPar ’10) Berkeley, CA June
2010.

 [14] Arvind, Kim P. Gostelow, and Will Plouffe,
“Indeterminacy, monitors, and dataflow”. ACM SIGOPS
Operating Systems Review vol. 11, no. 5 (Nov. 1977).

 [15] J. Liu, and VA Saletore “Self-scheduling on distributed-
memory machines” Supercomputing ’93 Proceedings
1993 pg 814-823.

[16] William Blume, et al, “Polaris: Improving the
Effectiveness of Parallelizing Compilers” in Languages
and Compilers for Parallel Computing, Springer Lecture
Notes in Computer Science 1995, vol. 892/1995, pg 141-
154.

[17] Peter Kogge “The Technical Challenges of Extreme
Scale Computing” Technical Presentation, Jet Propulsion
Laboratory May 7, 2010

BIOGRAPHY
Dr. Kim P. Gostelow is a flight
software engineer at JPL,
currently working on the Mars
Science Laboratory missions. He
has also done flight software for
the Mars Pathfinder and Mars
Exploration Rover projects, as
well as the Cassini mission to
Saturn, and others. Previous to
working at JPL, Dr. Gostelow was

on the faculty at the University of California, Irvine,
Information and Computer Science department, where he
did research on dataflow computer systems and
programming languages.

